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Abstract

Exergy or entropy generation analysis as a tool of applied thermodynamics is becoming standard practice for opti-

mizing energy conversion systems and in identifying the deficiency of a component in a system. Porous media is used to

enhance heat transfer in heat exchangers (HE). Also, porous layer adjusted to the inner surface simulates the fouling

effect in heat exchangers. Optimizing the heat exchanger inserted with porous media and understanding the fouling

effect on the rate of heat transfer and fluid flow is crucial for HE design and operations, which motivate the present

work. The present work mainly investigates entropy generation due to flow in a pipe fully or partially filled with porous

medium. The pipe is assumed to be isothermal. The porous layer is inserted at the core of the pipe or attached on the

inner surface of the pipe. Forced, laminar flow is assumed. The effects of porous layer thickness and permeability of

layer on the rate of entropy generation were investigated. Developing and fully developed flow conditions are consid-

ered in the analysis.

� 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Entropy generation in energy conversion systems is

discussed by Bejan [1] and Bejan et al. [2]. Exergy anal-

ysis is important for system optimizations especially for

heat exchangers (HE), where pumping power (pressure

drop) and rate of heat transfer should be optimized

for the best performance of the HE.

Hence, for optimization problems of HE by adapting

exergy analysis it is necessary to determine the following

parameters, value of exergy destruction (ED), value of

exergy losses (EL), capital investment cost (ZCI) and

operational and maintenance cost (ZO&M) of HE.
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Exergy destruction (ED) mainly cased by temperature

difference and pressure drop in the HE and exergy losses

(EL) is due to heat losses to the environment. The tem-

perature difference determines capital investment cost

and operational and maintenance cost as function Z =

ZCI + ZO&M = f(h,A,DT), which can be estimated based

on heat transfer and fluid flow analysis. In the present

study, it assumed that there is no heat transfer to the

ambient; hence EL is set to zero.

The exergy distraction can be related to entropy gen-

eration by using Guy–Stodola theorem as for jth compo-

nent of energy conversion system:

ED;j ¼ T env � Eg;j: ð1Þ

Entropy minimization in heat exchangers considered

by Bejan [1,3] and economical evaluation considered by

De Olivera et al. [4]. The mentioned works considered
ed.
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Nomenclature

Brm modified Brinkman number, Br Æ To/DT [–]

c specific heat [J/kg K]

D pipe diameter [m]

Da Darcy number, K=r2o or K/(H/2)2 [–]

eg specific entropy generation, [J/kg K]

Eg dimensionless entropy generation,

ðegr2oT 2
oÞ=ðkrT 2Þ [–]

ED exergy destruction [J]

EL exergy losses [J]

F inertia coefficient [–]

Gz Graetz number, 4 Æ Pr Æ Re/Z [–]

H half channel height [m]

h heat transfer coefficient [W/m2 K]

hv volumetric heat transfer coefficient [W/

m3 K]

k thermal conductivity [W/m K]

K permeability [m2]

m mass flow rate [kg/s]

Nu Nusselt number [–]

p pressure [Pa]

P dimensionless pressure, p=ðq � u2inÞ [–]
Pe Peclet number, Pr Æ Re [–]

Pr Prandtl number [–]

r radial coordinate, radius [m]

R dimensionless radius, r/ro [–]

Re Reynolds number, q Æ uin Æ ro/l or q Æ uin Æ (H/

2)/l [–]

ReD Reynolds number based on pipe diameter,

q Æ uin Æ D/l [–]

ReH Reynolds number based on the channel

height, q Æ uin H/l [–]

Rp, Yp ratio of the porous medium radius to the

pipe radius, or the porous layer thickness

to the channel height, rp/ro,yp/H [–]

T temperature [K]

u velocity component in z-direction [m/s]

U dimensionless velocity in z-direction, u/uin
[–]

v velocity component in r-direction [m/s]

V dimensionless velocity in r-direction, v/uin [–]

juj velocity magnitude, (u2 + v2)0.5 [m/s]

jUj dimensionless velocity magnitude,

(U2 + V2)0.5 [–]

yp half porous layer thickness [m]

z axial coordinate [m]

Z cost [EURO]

ZCI capital investment cost [EURO]

ZO&M operational and maintenance cost [EURO]

Greek symbols

l viscosity [kg/m s]

h dimensionless temperature, (T � Tin)/

(Tw � Tin) [–]

q density [kg/m3]

n dimensionless, z/ro or z/H [–]

Subscripts

e effective

env environmental

f fluid

in inlet condition

m bulk

o outer radius of the tube

p porous matrix radius/height

w wall
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simple heat exchanger without any heat transfer

enhancement mechanisms. Also, the fouling problem

in HE was considered by Robert and Feidt [5].

Partially filling a tube with porous media has two

fold of applications; a layer of porous medium adjusted

to the inner surface of a tube simulates the fouling,

which is one of the main problems of the HE (Morosuk

[6]). On the other hand, adding a porous cylinder to

the core of the tube enhances heat transfer (Mohamad

[7]). An over review will be given on the work done

on application of porous layer for heat transfer

enhancements.

Different methods of heat transfer enhancements in

HE have been extensively studied and reviewed by Webb

[8], then there is no need to elaborate on the topic. Using

porous medium to enhance the rate of heat and mass
transfer in HE has many advantages. The value of Nus-

selt number is few folds higher than the values predicted

for laminar flows in channels without porous materials

[7]. For high porous media, the enhancement of heat

transfer is less than the value suggested by [9], which also

depends on the effective thermal conductivity of the

medium. Moreover, the radiative heat transfer is higher

for systems filled with porous material than that without

porous material due to the emitting and scattering prop-

erties of the porous solid surfaces. For some applications

there is no need to completely fill the systems with the

porous medium, as a partial filling of the porous med-

ium is sufficient. Partial filling has advantage of reducing

the pressure drop compared with a system filled com-

pletely with porous medium. Moreover, partial fill-

ing eliminates contact between the porous material and



Fig. 1. Schematic diagram of the problem.
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surface, which decreases heat losses from the porous

material to the surface. Such a criterion is required in

a system where the main purpose is to enhance the ther-

mal coupling between the porous medium and fluid flow,

and to eliminate strong thermal coupling between the

system and the ambient. For instance, in the solar air

heater developed by Mohamad [10], the main idea was

to enhance the rate of heat transfer from the porous

medium, which is heated by solar radiation, to air, and

at the same time to reduce the heat losses to the ambient.

Furthermore, partial filling can reduce pressure drop. A

partial filling of a channel with porous media forces the

flow to escape from the core region, depending on the

permeability of the medium, to the outer region, which

reduces the boundary layer thickness and consequently

enhances the rate of heat transfer. The porous medium

also modifies the effective thermal conductivity and heat

capacity of the flow, and the solid matrix enhances the

rate of radiative heat transfer in a system where the

gas is the working fluid. Hence, the heat transfer

enhancements take place by three mechanisms; flow

redistribution, thermal conductivity modification and

radiative property modification of the medium.

Kaviany [11] considered laminar developing flow

through a porous layer sandwiched between isothermal

parallel plates. Forced convection in a channel whose

walls are layered by a porous medium was considered

by Poulikakos and Kazmierczak [12] for constant heat

flux and constant wall temperature conditions, both

analytically and numerically. A numerical study was

presented by Jang and Chen [13] for a forced flow in

a parallel channel partially filled with a porous medium

by adopting the Darcy–Brinkman–Forchheimer model

with a thermal dispersion term. Chikh et al. [14,15]

presented an analytical solution for the fully developed

flow in annulus configuration partially filled with

porous medium. Al-Nimr and Alkam [16] extended

the analysis to the transient solution for annulus flow

with porous layer. Recently, Alkam et al. [17] and

Abu-Hijleh and Al-Nimr [18] studied transient forced

convection behavior of a flow in parallel plate channels

with a porous substrate attached to the one of the

plates. Recent reviews of the subject are available in

[9,19].

In the present work, steady laminar flow in conduits

(pipes and channels) partially filled with a porous layer

was considered analytically and numerically for constant

wall temperature boundary conditions. The entropy

generations due to mechanical and thermal mechanisms

are analyzed theoretically and numerically. The results

are presented for different permeability and porous layer

thicknesses. It is found that the mechanical entropy gen-

eration is most dominant mechanism of irreversibility of

the system. Also, the maximum entropy generation takes

place at the interface between clear fluid and fluid satu-

rated porous medium.
2. Problem definition

The schematic diagram of the problem is shown in

Fig. 1. Laminar fluid flow with constant thermophyiscal

properties in a conduit partially filled with porous

medium is considered. Fluid stream with a uniform

velocity and temperature is considered at the inlet to

the conduit. The wall temperature of the conduit is

fixed, and assumed that it is higher than the inlet

temperature.

2.1. Governing equations

The flow is assumed to be two-dimensional and stea-

dy. It is also assumed that buoyancy effects are negligi-

ble. The governing equations may be written as:

continuity

o

oz
ðquÞ þ 1

rn
o

or
ðrnqvÞ ¼ 0 ð2Þ

z-momentum

o

oz
ðquuÞ þ 1

rn
o

or
ðrnqvuÞ

¼ � op
oz

þ o

oz
le

ou
oz

� �
þ 1
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o
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rnle

ou
or

� �

� f
leu
K

� f
qFffiffiffiffi
K

p juju ð3Þ

r-momentum

o

oz
ðquvÞ þ 1

rn
o

or
ðrnqvvÞ

¼ � op
or

þ o

oz
le

ov
oz

� �
þ 1

rn
o

or
rnle

ov
or

� �

� f
lev
K

� f
qFffiffiffiffi
K

p jujv� lev
r2

n ð4Þ

For flow in a pipe (axi-symmetric) n is set to unity and

for flow in channel, n is set to zero. The parameter f is

set to unity for flow in porous medium and to zero for

flow in a region without porous material. Note that flux

continuity (momentum and energy) is ensured by evalu-

ating the harmonic mean values of the physical proper-

ties (viscosity, thermal conductivity) at the interface

between the clear fluid and the fluid-saturated porous

medium.
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2.2. Energy equation

The energy equation, while neglecting viscous dissi-

pation effect and heat generation, may be written as:

o

o
ðqeceuT Þ þ

1

rn
o

or
ðqecer

nvT Þ

¼ o

oz
ke
oT
oz

� �
þ 1

rn
o

or
rnke

oT
or

� �
ð5Þ

where ke, ce and qe are the effective thermal conductivity,

effective specific heat and effective density of the med-

ium, respectively.

In modeling of the energy transport, it is assumed

that the local thermal equilibrium exists between solid

and fluid phases. Thermal equilibrium condition is

adopted by Kaviany [11]. Also, previous work of Moha-

mad and Karim [20] revealed that the thermal equilib-

rium assumption is valid as far as there is no heat

released in the fluid phase (combustion for instance) or

in solid phase (catalytic effect for instance). Moreover,

a few tests done with two energy equation and it is found

that the results are not that sensitive to the non-equilib-

rium condition. Therefore, it is assumed that thermal

equilibrium is valid.

Axi-symmetric boundary conditions are adopted at

r = 0, i.e., v = 0 with the gradients of u and T in the r-

direction set to zero. The v velocity component is set

to zero, u = uin and T = Tin at z = 0. For z = L, the gra-

dients of the variables in the z-direction are set to zero.

For r = ro and 0 < z < L, no slip condition is assumed,

i.e., u = v = 0 and T = Tw.

The above equations are non-dimensionalized by

using the inlet velocity, inlet temperature, and the con-

duit (radius or half height) as references to scale velocity

components, temperature and length, respectively.

Hence, the momentum and energy equations may be

reformulated as:

Z-momentum

o

oZ
ðUUÞ þ 1

Rn

o

oR
ðRnVUÞ

¼ � oP
oZ

þ 1

Re
o

oZ
oU
oZ

� �
þ 1

Rn

o

oR
Rn oU

oR

� �� �
� f

U
DaRe

ð6Þ

R-momentum

o

oZ
ðUV Þ þ 1

Rn

o

oR
ðRnVUÞ

¼ � oP
oR

þ 1

Re
o

oZ
oV
oZ

� �
þ 1

Rn

o

oR
Rn oV

oR

� �� �

� f
V

DaRe
� f

V

ReR2
n ð7Þ
energy equation

o

oZ
ðUhÞ þ 1

Rn

o

oR
ðRnV hÞ

¼ 1

Pe
o2h

oZ2

� �
þ 1

PeRn

o

oR
Rn oh

oR

� �
ð8Þ
2.3. Entropy generation calculations

The volumetric rate of entropy generation arises due

to the heat transfer and friction losses. For a conduit

partially filled with porous media, the entropy genera-

tion can be written as Bejan [1],

eg ¼
k

T 2
o

½rT 2� þ ð1� f ÞlU
T o

þ f
l

KT o

½~v�2: ð9Þ

The first term is the rate of entropy generation due to

heat transfer and the last two terms are due to friction.

For region porous media the last term become impor-

tant compared with second term. As a usual practice,

the last term is set to zero for region without porous

medium and second term set to zero for region with por-

ous medium. The heat dissipation term due to friction

(U) for axi-symmetric flow conditions can be expressed

as Bird et al. [21],

U ¼ 2
ov
or

� �2

þ v
r
n

� �2

þ ou
oz

� �2
" #

þ ov
oz

þ ou
or

� �2
ð10Þ

The dimensionless form for entropy generation can writ-

ten in final form substituting Eq. (10) into Eq. (9),

Eg ¼
oh
oZ

� �2

þ oh
oR

� �2

þ ð1� f ÞBrm 2
oV
oR

� �2
"(

þ V
R
n

� �2

þ oU
oZ

� �2
#
þ oV

oZ
þ oU

oR

� �2)
þ f

Brm
Da

½~V �2

ð11Þ

The parameter that controls entropy generation for fluid

flow without porous material is modified Brinkman

number and for flow in a porous media the controlling

parameter is ratio of modified Brinkman to Darcy num-

ber. For a fixed modified Brinkman number, decreasing

Darcy number, less permeable media, enhances entropy

generation due to high pressure drop and friction losses.

2.4. Nusselt number calculations

The Nusselt number for a pipe can be calculated as:

NuD ¼
2 oh

oR

hw � hm

ð12Þ

The bulk temperature for flow in a pipe and in a channel

can be calculated as:
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hm ¼
R 1

0
UhRn dRR 1

0
URn dR

ð13Þ
3. Method of solution

3.1. Numerical solution

A control volume, finite-difference approach is used

to solve the model equations with specified boundary

conditions. The SIMPLER algorithm is employed to

solve the equations in primitive variables. Central differ-

ence approximations are used to approximate the advec-

tion–diffusion terms, i.e., the scheme is second order

accurate in space. The governing equations are con-

verted into a system of algebraic equations through inte-
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Fig. 2. Fully developed velocity profiles in a pipe partially filled

(c) Da = 10�4; (d) Da = 10�6.
gration over each control volume. The algebraic

equations are solved by a line-by-line iterative method.

The method sweeps the domain of integration along

the R and Z-axis and uses the tri-diagonal matrix inver-

sion algorithm to solve the system of equations. Velocity

components are under-relaxed by a factor of 0.7. For

most calculations, 4000 iterations are sufficient to get

convergent solution for a 151 · 81 grid, and more itera-

tion is needed for 201 · 101. The criteria for convergence

are to conserve mass, momentum, energy and species

globally and locally, and to ensure convergence of pre-

selected dependent variables to constant values within

machine error.

In order to insure that the results are grid size inde-

pendent, different meshes are tested namely 121 · 61,

151 · 81 and 201 · 101. The predicted results are com-

pared for flow in a pipe without porous media. The
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developed velocity profile (parabolic) is compared with

analytical solution and difference was not noticeable.

The test was done for different Reynolds numbers and

found that the developing length is inversely propor-

tional of Reynolds number, which matches the analyti-

cal solution. Furthermore, the local Nusselt numbers

along the pipe and the channel were well compared with

analytical solutions. Since, results are available for a

pipe and a channel fully filled with porous media, the

predicted results were well compared with Nusselt num-

ber and velocity profile was uniform, except near the

boundary. Quantative comparison of the current results

with available data will be presented in the following

section. The calculations are performed by adopting

non-uniform 151 · 61 grids in z- and r-direction, respec-

tively. Very fine grids are adopted near the boundaries.

All the calculations were performed using double preci-

sion, which is necessary for the Nusselt number

calculations.
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Fig. 3. Fully developed velocity profiles in a channel partially filled

(c) Da = 10�4; (d) Da = 10�6.
3.2. Analytical solution

It is possible to obtain an analytical solution for fully

developed condition. The dimensionless z-momentum

equation for flow in a region without porous material

can be written for the fully developed condition as:

0 ¼ � dP
dZ

þ 1

Re
1

Rn

d

dR
Rn dU

dR

� �� �
ð14aÞ

The momentum equation for flow in saturated porous

material can be written as:

0 ¼ � dP
dZ

� U
DaRe

ð14bÞ

Eq. (14b) is valid for R from zero (center of the pipe)

to radius equal to Rp, while Eq. (14a) is valid from

R = Rp to R = 1. Assuming the velocity continuity at

the interface between the fluid and fluid saturated
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porous medium, it is possible to solve the Eq. (14a) and

(14b) and velocity profile for circular tube can be written

as:

U ¼ � 8Da lnðRpÞ
ðR2

p � 1Þ 1� 4Da� R2
p þ ð1þ R2

pÞ lnðRpÞ
h i

for 0 6 R 6 Rp ð15aÞ
and

U ¼ �
2 ð4Da� 1þ R2

pÞ lnðRÞ � ðR2 � 1Þ lnðRpÞ
h i
ðR2

p � 1Þ 1� 4Da� R2
p þ ð1þ R2

pÞ lnðRpÞ
h i

for Rp 6 R 6 1 ð15bÞ

The flow velocity is constant in the saturated porous

region.
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Fig. 4. Comparison of velocity profile obtain numerically and an

(b) dp = 0.4, for Da = 10�2 and Da = 10�3; (c) dp = 0.4, for Da = 10�
For flow in ducts the velocity profile can be written as

for 0 6 Y 6 Yp

U ¼ 12Da

6Dað1þ Y pÞ � ðYp � 1Þ3
ð16aÞ

and

for Yp 6 Y 6 1

U ¼ �
6ðY � 1Þ 2Da� ðY � Y pÞðY p � 1Þ

� �
ðY p � 1Þ ðY p � 1Þ3 � 6DaðY P þ 1Þ

h i ð16bÞ

Also, the entropy generation for flow in a region with

out porous material and fully developed conditions

can be simplifies as:
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Eg ¼
oh
oZ

� �2

þ oh
oR

� �2

þ Brm
oU
oR

� �2( )
ð17Þ

The entropy generation for the region with saturated

porous material can be written as:

Eg ¼
oh
oZ

� �2

þ oh
oR

� �2

þ Brm
Da

½U �2 ð18Þ

From numerical analysis (which will be discussed later

on), the thermal contribution for entropy generation is

not that significant compared with that of mechanical.

Hence, if the thermal contribution to the entropy gener-

ation is neglected the entropy generation for the fully

developed condition can be written as:
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Fig. 5. Temperature profile for different porous layer radius and for (a

length of the pipe; (c) Da = 10�6, at the exit of the pipe; (d) Da = 10�
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4. Results and discussion

It is know that the fully developed flow in a tube and

rectangular duct without porous have a parabolic veloc-
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Fig. 6. Temperature profile for different porous layer radius and for

middle length of the channel; (c) Da = 10�6, at the exit of the channe
ity profiles with non-dimensional center velocity of 2.0

and 1.5, respectively. The numerical solution predicted

the velocity profiles for both cases within machine error.

Also, the Nusselt number for constant wall temperature

is 3.66 and 7.54, for tube and channel, respectively. The

predicted results were consistent with the analytical re-

sults. For details we referee to Mohamad [7]. The objec-

tive of this work is to analyze the entropy generation

associated with flow in tube and channel fully or par-

tially filled with porous medium.

The mechanism of entropy generation in a system

can be classed as thermal and mechanical. Whenever,

there is a heat transfer, i.e., temperature gradient in

the system and/or between the system and surrounding,

entropy generates (thermal), which depends on the

temperature gradient (Eq. (11), first two terms). Further-

more, the entropy generates due to internal and exter-

nal friction (mechanical) in a conduit without porous
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medium, which depends on the velocity gradient, i.e.,

shear stress (Eq. (11), third term). Porous medium adds

extra flow resistance, drag and friction between the flow

and solid surfaces, consequently entropy generates,

which mainly depends on the velocity of the flow in

the medium and permeability of the medium (Darcy

number) as it is represented in the last term of the Eq.

(11). Hence, it is essential to understand the temperature

and velocity field of the flow in order to fully gauge the

entropy generation in the system.

Figs. 2 and 3 show the fully developed velocity pro-

files for different Darcy parameter and porous thickness

and for flow in tube and channel, respectively. It is clear

that the Darcy model is not valid for Da > 10�4 (high

porous medium), where the viscous and inertia terms be-

come important in the porous region. The velocity is not

constant in the porous layer. If the porous material is

not fully occupy the conduit, the flow almost diminishes

as the Da decreases less than 10�4 in the porous region.
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Fig. 7. Profile of entropy generation for (a) Da = 10�2, dp = 0.6

at the exit of the pipe; (b) Da = 10�2 for the pipe fully filled with

porous medium.
The analytical solution predicts velocity profile accu-

rately for Da = 10�4 as shown in Fig. 4a. The analytical

solution is fairly in agreement with the numerical solu-

tion for Da > 10�4, Fig. 4b and c. Since, the analytical

solution is based on Darcy model for flow in porous

media, the interface region is not in good agreement be-

tween analytical and numerical solution. In fact, it is

possible to get better agreement between analytical solu-

tion and numerical solution, if the diffusion term is re-

tained in the porous medium region for Da > 10�4.

The velocity profiles presented before help us in explain-

ing the trend of entropy generation in the fully devel-

oped region due to friction and drag forces.

To understand the thermal entropy generation, a

need arises to inspect temperature field. Figs. 5 and 6

show temperature profiles as function of porous layer

thickness for tube, and channel flows, respectively, for

Da = 10�2 and Da = 10�6 and for two position at the

outlet and half length of the conduit. The general trend
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Fig. 8. Total entropy generation for (a) Da = 10�2; (b) Da =

10�6 and for different porous layer thickness.
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is that for dp = 0.6 the temperature is almost uniform

across the cross section at the outlet of the conduit.

The temperature gradient is almost zero at the core re-

gion of the conduit, except for full filled conduit with

porous medium. For the region near the solid boundary

the temperature gradient depends on the porous layer.

In general as the porous layer thickness decreases the

temperature gradient increases, except for fully filled

conduit. The mentioned trend is valid for temperature

profile at the outlet of the conduit.

The following paragraphs discuss the entropy budget

analysis and entropy development along the conduit for

different Darcy parameters and porous layer thickness.

The entropy generation budget analysis is shown in

Fig. 7 for Da = 10�2, Br = 0.1 and for dp of 0.6 and

1.0, respectively. The dominant mechanism of entropy

generation is due to viscous and drags force between
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Fig. 9. Comparison between numerical and analytical solutions

in predicting total entropy generation in a pipe filled with

porous medium partially and for (a) Da = 10�2 and Da = 10�3;

(b) Da = 10�4 and Da = 10�5.
flow and porous solid surface. The entropy generation

due to heat transfer can be neglected without introduc-

ing noticeable error. However, the results presented for

Brm = 0.1, it is expected that the thermal entropy gener-

ation compared with that of the friction become impor-

tant as Brm decrease, i.e., rate of heating or cooling

increases (DT increases).

For tube partially filled with porous media, the entro-

py generation in the porous region is the dominated by

the friction and drag forces between flow and porous

solids. The second contribution comes from shear stress

if Darcy number is greater than Da = 10�4. For region

without porous medium, the mechanical entropy gener-

ation is higher at the interface region and at the wall due

to shear stress, Fig. 7a. The entropy generation de-

creases between the mentioned boundaries and reaches

minimum value at the point where the velocity profile

reaches the maximum value (Fig. 2a). These results are
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for different dp.



T.V. Morosuk / International Journal of Heat and Mass Transfer 48 (2005) 2548–2560 2559
typical for other Darcy numbers and conduit shapes.

Hence, there is no need to show more figures.

Fig. 8a and b show the total entropy generation for

Da = 10�2 and Da = 10�6, respectively. The trend is as

follow, the entropy generation has highest value at the

interface between the flows saturated porous medium

and clear flow. The entropy generation reaches the min-

imum value at the region where the velocity reaches the

highest value with zero gradients. The total entropy gen-

eration increases as the porous layer thickness increases

and reaches highest value for conduit fully filled with

porous medium.

Analytical solution predicts the entropy generation

quite well for Da 6 10�4 as shown in Fig. 9, but the ana-

lytical solution fails to produce correct results at the

interface for Da > 10�4 as shown in Fig. 9a, because

the analytical solution based on Darcy model.

The cross sectional average total entropy generations

along the conduit are shown in Figs. 10 and 11 for tube

and channel flows, respectively. Entropy generation
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asymptotically decreases to a constant value as the fully

developed condition reaches. As the Darcy number de-

creases and/or porous layer thickness increases, the en-

tropy generation increases.
5. Conclusions

Numerical and analytical solutions are performed to

investigate the entropy generation in flows through

heated, isothermal pipes and ducts. The analytical solu-

tion is based on Darcy law for the flow in porous region.

The analytical solution is accurate for Darcy parameter

greater that about 10�4. The mechanism of entropy gen-

eration in the conduit is mainly dominated by friction

and drag force in the porous medium. The maximum en-

tropy generation occurs at the interface between the flow

in porous medium and clear flow. The entropy genera-

tion showed minimum value in the region where the

velocity shows the peak value, i.e., zero gradients. The

total entropy generation increases as the Darcy para-

meter decrease and/or porous layer increase and reaches

maximum value for flow in a conduit fully filled with

porous medium. Also, the entropy generation has high-

est value at the entrance region and asymptotically de-

ceases to a constant value as the flow reaches fully

developed condition.
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